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1. Introduction

This paper is concerned with the intervention scheduling of a railway track, based on the

observation of two indicators, which measure the deterioration of the geometry track. The

railway track is considered as deteriorated when any of these two indicators is beyond a

given threshold. The goal of the paper is the study of the intervention scheduling, which

must ensure that, given some observations provided by inspection, the railway track will

remain serviceable until the next intervention with a high probability.

The deterioration of the track geometry is characterized by the development of different

representative parameters like, for example, the levelling of the track. Figure 1 shows

the defects that are measured by two of these parameters: the longitudinal (NL) and

transversal (NT) levelling indicators.

Longitudinal levelling (NL) Transversal levelling (NT)
Figure 1. Levelling defects

At the SNCF (French National Railways), inspections of the track geometry are car-

ried out by a coach called Mauzin vehicle. On high-speed tracks, a high-speed train

(IRIS320) has been adapted to do the same measurements. The collected time series

are transformed into indicators that sum up the state of the track over each kilometer.

These new indicators are referred to as synthesized Mauzin data. Numeric Mauzin data

are available since the opening of the French high-speed lines.

Usually, the synthesized Mauzin indicator of the longitudinal levelling (NL indicator)

is used for maintenance issues: thresholds are fixed for this indicator in order to obtain a

classification of the track condition and to fix dates for maintenance operations. For ex-

ample, an intervention should be scheduled before the NL indicator exceeds a predefined

threshold.

Based on expert judgements, a Gamma process has been used in (Meier-Hirmer et al.

2009) both to model the evolution of the NL indicator and to plan maintenance actions.

As noted by J.M. van Noortwijk in his survey (van Noortwijk 2009), this stochastic

process is widely used in reliability studies (see also (Abdel-Hameed 1975, Grall et al.

2002, Zuckerman 1978)). Various domains of applications exist, such as civil engineering
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(Buijs et al. 2005, Cinlar et al. 1977), highway engineering (Nicolai et al. 2007) or railway

engineering (Meier-Hirmer et al. 2009). Gamma processes are also used in other domains,

such as finance (Joshi and Stacey 2006) or risk analysis (Dufresne et al. 2000). All these

papers use univariate Gamma processes.

In the present case, as the two indicators NL and NT are dependent, the use of a

bivariate model is required. For this purpose, different processes might be used, such as

Bessel (Newby and Baker 2006) or Lévy processes (Kallsen and Tankov 2006). In this

paper, the approach of F.A. Buijs, J.W. Hall, J.M. van Noortwijk and P.B. Sayers in

(Buijs et al. 2005) is used: a specific Lévy process called bivariate Gamma process is con-

sidered. This process is constructed from three independent univariate Gamma processes

by trivariate reduction, and has univariate Gamma processes as marginal processes.

It is the first time that both NL and NT indicators are used conjointly to predict the

optimal dates of interventions. The objective is to analyze the correlation between the

two processes and to determine in what circumstances this bivariate process allows for

a better prediction of the intervention times than the current univariate one, based only

on the NL indicator.

The paper is organized in the following way: bivariate Gamma processes are introduced

in Section 2. Empirical and maximum likelihood estimators for their parameters are

provided in Section 3. An EM algorithm is proposed to carry out the maximum likelihood

estimation. Both methods are tested on simulated data. Section 4 is devoted to the study

of maintenance scheduling and to the comparison of the results based on the bivariate

and on the univariate models. Finally, a bivariate Gamma process is fitted to real data of

railway track deterioration in Section 5 and it is shown that the maintenance scheduling

based on the two available deterioration indicators is clearly safer than those based on a

single one, or on both taken separately.

2. The bivariate Gamma process

Recall that an univariate (homogeneous) Gamma process (Yt)t≥0 with parameters α > 0

and β > 0 is a process with homogeneous independent increments such that Yt − Y0 is

Gamma distributed Γ (αt, β) with probability density function (p.d.f.)

fαt,β (x) =
βαt

Γ (αt)
xαt−1e−βx
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for all x ∈ [0,∞), and Laplace transform

E
(
e−s(Yt−Y0)

)
=

(
β

β + s

)αt
for all s ≥ 0.

Recall that E (Yt − Y0) = αt
β , Var(Yt − Y0) = αt

β2 for all t ≥ 0 (see (van Noortwijk 2009)

for more details).

Following (Buijs et al. 2005), a bivariate Gamma process (Xt)t≥0 =
(
X

(1)
t , X

(2)
t

)
t≥0

is

constructed by trivariate reduction: starting from three independent univariate Gamma

processes
(
Y

(i)
t

)
t≥0

with parameters (αi, 1) for i ∈ {1, 2, 3} and from b1 > 0, b2 > 0, one

defines:

X
(1)
t =

(
Y

(1)
t + Y

(3)
t

)
/b1, and X

(2)
t =

(
Y

(2)
t + Y

(3)
t

)
/b2 for all t ≥ 0.

The process (Xt)t≥0 =
(
X

(1)
t , X

(2)
t

)
t≥0

is then a homogeneous process in time with

independent increments and it is a Lévy process. The marginal processes of (Xt)t≥0 are

univariate Gamma processes with respective parameters (ai, bi), where ai = αi + α3 for

i = 1, 2.

For any bivariate Lévy process, the correlation coefficient ρXt
of X

(1)
t and X

(2)
t is known

to be independent of t. For a bivariate Gamma process, one obtains:

ρ = ρXt
=

α3√
a1a2

and

α1 = a1 − ρ
√
a1a2, α2 = a2 − ρ

√
a1a2, α3 = ρ

√
a1a2.

This entails

0 ≤ ρ ≤ ρmax =
min (a1, a2)
√
a1a2

. (1)

See (Devroye 1986) section XI.3 for similar results on bivariate Gamma distributions.

This leads to two equivalent parameterizations of a bivariate Gamma process:

(α1, α2, α3, b1, b2) and (a1, a2, b1, b2, ρ).
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With the parameterization (α1, α2, α3, b1, b2), the joint p.d.f. of Xt is:

gt (x1, x2) = b1b2

∫ min(b1x1,b2x2)

0
fα1t,1 (b1x1 − x3) fα2t,1 (b2x2 − x3) fα3t,1 (x3) dx3,

=
b1b2e

−b1x1−b2x2

Γ (α1t) Γ (α2t) Γ (α3t)

×
∫ min(b1x1,b2x2)

0
(b1x1 − x3)α1t−1 (b2x2 − x3)α2t−1 xα3t−1

3 e−x3 dx3 (2)

for x1 ≥ 0, x2 ≥ 0.

A Lévy process is characterized both by its Laplace transform and by its Lévy measure.

It is easy to compute their expressions for the bivariate Gamma process constructed

above.

For x = (x1, x2) with x1 ≥ 0 and x2 ≥ 0, the Laplace transform of X(t) is equal to :

E
(
e−x·X(t)

)
= E

(
e−x1/b1Y

(1)
t −(x1/b1+x2/b2)Y

(3)
t −x2/b2Y

(2)
t

)
=

(
1

1 + x1/b1

)α1t( 1

1 + x1/b1 + x2/b2

)α3t( 1

1 + x2/b2

)α2t
=

(
b1

b1 + x1

)(a1−ρ
√
a1a2)t( b1b2

b1b2 + x1b2 + x2b1

)ρ√a1a2t( b2
b2 + x2

)(a2−ρ
√
a1a2)t

.

Since the Lévy measure µX is caracterized by

E
(
e−x·Xt

)
= exp

t ∫∫
[0,+∞)2

(
e−x·y − 1

)
µX(dy)


for all x = (x1, x2) with x1 ≥ 0 and x2 ≥ 0, it is easy to obtain

dµX (y1, y2) =
a1 − ρ

√
a1a2

y1
e−b1y1 dy1 × dδ0 (y2) +

a2 − ρ
√
a1a2

y2
e−b2y2 dδ0 (y1)× dy2

+
ρ
√
a1a2

y1
e−b1y1 dy1 × dδb1y1/b2 (y2) .

The tail integral function UX(x1, x2) = µ(]x1,+∞[ × ]x2,+∞[) will also be used in the

following. It is equal to:

U(x1, x2) = ρ
√
a1a2

∫ +∞

sup(b1x1,b2x2)

e−y

y
dy. (3)
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A more general Gamma process may be constructed as a bivariate Lévy process with

univariate Gamma processes as marginal processes. For such a process, if a1, b1, a2, b2

are the parameters of the marginal Gamma processes, the linear correlation coefficient ρ

may be proved to satisfy:

0 ≤ ρ ≤
∫∫

[0,+∞)2

min

(√
a1

a2
E(u1),

√
a2

a1
E(u2)

)
du1du2

where E(u) =
∫ +∞
u

e−y

y dy. If a1 6= a2, this upper bound is strictly greater than the upper

bound (1) for the process constructed by trivariate reduction. Then the construction by

trivariate reduction cannot provide all levels of dependence for Gamma processes since it

does not cover the entire range of possible linear correlation coefficients. Nevertheless it

is sufficient for our applicative purpose here and in all the following a bivariate Gamma

process stands for a process constructed by trivariate reduction.

3. Parameter estimation

The data used for the parameter estimation are values of the process increments for non

overlapping time intervals on a single trajectory, and also on different independent tra-

jectories. The data can then be represented as realizations of
(

∆tj ,∆X
(1)
j ,∆X

(2)
j

)
1≤j≤n

where ∆tj = tj−sj stands for a time increment and ∆X
(i)
j = X

(i)
tj −X

(i)
sj for the associated

i-th marginal increment (i = 1, 2). For different j, the random vectors
(

∆X
(1)
j ,∆X

(2)
j

)
are independent, but not identically distributed. The random variable ∆X

(i)
j (i = 1, 2)

is Gamma distributed with parameters (ai ∆tj , bi). The joint p.d.f. of the random vector(
∆X

(1)
j ,∆X

(2)
j

)
is equal to g∆tj (., .), with ∆tj substituted to t in (2). In the same way

as for the parameter estimation of an univariate Gamma process, both empirical and

maximum likelihood methods are possible in the bivariate case.

3.1 Empirical estimators

Using E
(

∆X
(i)
j

)
= ai

bi
∆tj and Var

(
∆X

(i)
j

)
= ai

b2i
∆tj for i = 1, 2 and for all j, empir-

ical estimators (â1, b̂1, â2, b̂2) of (a1, b1, a2, b2) are given in (Cinlar et al. 1977) and (van



November 29, 2010 10:17 Structure and Infrastructure Engineering swp0000

7

Noortwijk and Pandey 2004), with:

âi

b̂i
=

∑n
j=1 ∆X

(i)
j∑n

j=1 ∆tj
and

âi

b̂2i
=

∑n
j=1

(
∆X

(i)
j − âi

b̂i
∆tj

)2

∑n
j=1 ∆tj − 1∑n

j=1 ∆tj

∑n
j=1 (∆tj)

2 . (4)

Using

Cov
(

∆X
(1)
j ,∆X

(2)
j

)
= ρ

√
a1a2

b1b2
∆tj ,

a similar estimator ρ̂ may be given for ρ, with:

ρ̂

√
â1â2

b̂1b̂2
=

∑n
j=1

(
∆X

(1)
j − â1

b̂1
∆tj

)(
∆X

(2)
j − â2

b̂2
∆tj

)
∑n

j=1 ∆tj − 1∑n
j=1 ∆tj

∑n
j=1 (∆tj)

2 . (5)

These estimators satisfy:

E
(
âi

b̂i

)
=
ai
bi
, E

(
âi

b̂2i

)
=
ai
b2i
, E

(
ρ̂

√
â1â2

b̂1b̂2

)
= ρ

√
a1a2

b1b2
.

If the time increments ∆tj are equal, these estimators cöıncide with the usual empirical

estimators in the case of i.i.d. random variables.

3.2 Maximum likelihood estimators

The parameter estimation of a univariate Gamma process is usually done by maximizing

the likelihood function (see e.g. (Meier-Hirmer et al. 2009)). With this method, estimators

āi and b̄i (i = 1, 2) of the marginal parameters are computed by solving the equations:

āi
b̄i

=

∑n
j=1 ∆X

(i)
j∑n

j=1 ∆tj
and

 n∑
j=1

∆tj

× ln

(
āi

∑n
j=1 ∆tj∑n

j=1 ∆X
(i)
j

)
+

n∑
j=1

∆tj

(
ln
(

∆X
(i)
j

)
− ψ (āi ∆tj)

)
= 0,

where

ψ (x) =

dΓ (x)

dx
Γ (x)

, Γ (x) =

∫ ∞
0

e−uux−1du

for all x > 0 (ψ is the Digamma function).
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In order to estimate all the parameters of the bivariate process

(α1, α2, α3, b1, b2) (which are here preferred to (a1, b1, a2, b2, ρ)), the likelihood

function associated with the data
(

∆tj ,∆X
(1)
j ,∆X

(2)
j

)
1≤j≤n

can be written as

L(α1, α2, α3, b1, b2) =
∏n
j=1 g∆tj (∆X

(1)
j ,∆X

(2)
j ) where g∆tj is provided by (2). However,

because of the expression of the function gt(., .), it seems complicated to optimize this

likelihood function directly. An EM algorithm (see (Dempster et al. 1977)) is then used,

considering
(

∆Y
(3)
j = Y

(3)
tj − Y

(3)
sj

)
1≤j≤n

as hidden data. This procedure is still too

complicated for estimating the five parameters and does not work numerically. So, the

procedure is restricted to the three parameters (α1, α2, α3). For the parameters b1, b2,

the values
(
b̄1, b̄2

)
computed using the maximum likelihood method for each univariate

marginal process are taken.

For sake of simplicity, the realizations of
(

∆tj ,∆X
(1)
j ,∆X

(2)
j ,∆Y

(3)
j

)
1≤j≤n

are denoted

by
(
tj , x

(1)
j , x

(2)
j , y

(3)
j

)
1≤j≤n

in the following, the associated n-dimensional random vectors

by
(
X

(1)
, X

(2)
, Y

(3)
)

and the associated n-dimensional data vectors by
(
x(1), x(2), y(3)

)
.

The joint p.d.f. of the random vector
(
X

(1)
t , X

(2)
t , Y

(3)
t

)
is equal to:

b1b2fα1t,1 (b1x1 − y3) fα2t,1 (b2x2 − y3) fα3t,1 (y3)

=
b1b2

Γ (α1t) Γ (α2t) Γ (α3t)
e−(b1x1+b2x2) (b1x1 − y3)α1t−1 (b2x2 − y3)α2t−1 yα3t−1

3 ey3 ,

with 0 ≤ y3 ≤ min (b1x1, b2x2), x1 > 0 and x2 > 0.

Then, the log-likelihood function Q
(
x̄(1), x̄(2), ȳ(3)

)
associated with the complete data(

x(1), x(2), y(3)
)

is derived:

Q
(
x̄(1), x̄(2), ȳ(3)

)
= n (ln (b1) + ln (b2))−

n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj))− b1
n∑
j=1

x
(1)
j

− b2
n∑
j=1

x
(2)
j +

n∑
j=1

(
(α1tj − 1) ln

(
b1x

(1)
j − y

(3)
j

)
+ (α2tj − 1) ln

(
b2x

(2)
j − y

(3)
j

)
+ (α3tj − 1) ln

(
y

(3)
j

)
+ y

(3)
j

)
.

For the EM algorithm, the conditional log-likelihood of the complete data given the
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observed data is needed:

E
(
Q
(
X̄(1), X̄(2), Ȳ (3)

)
|X̄(1) = x̄(1), X̄(2) = x̄(2)

)
= n (ln (b1) + ln (b2))− b1

n∑
j=1

x
(1)
j − b2

n∑
j=1

x
(2)
j

+

n∑
j=1

(
(α1tj − 1)E

(
ln
(
b1x

(1)
j −∆Y

(3)
j

)
|∆X(1)

j = x
(1)
j ,∆X

(2)
j = x

(2)
j

)
+ (α2tj − 1)E

(
ln
(
b2x

(2)
j −∆Y

(3)
j

)
|∆X(1)

j = x
(1)
j ,∆X

(2)
j = x

(2)
j

)
+ (α3tj − 1)E

(
ln
(

∆Y
(3)
j

)
|∆X(1)

j = x
(1)
j ,∆X

(2)
j = x

(2)
j

)
+E

(
Y

(3)
j |∆X

(1)
j = x

(1)
j ,∆X

(2)
j = x

(2)
j

))
−

n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj)) . (6)

Finally, the conditional probability density function of Y
(3)
t given X

(1)
t = x1, X

(2)
t = x2

is equal to:

fα1t,1 (b1x1 − y3) fα2t,1 (b2x2 − y3) fα3t,1 (y3)∫ min(b1x1,b2x2)
0 fα1t,1 (b1x1 − x3) fα2t,1 (b2x2 − x3) fα3t,1 (x3) dx3

=
(b1x1 − y3)α1t−1 (b2x2 − y3)α2t−1 yα3t−1

3 ey3∫ min(b1x1,b2x2)
0 (b1x1 − x3)α1t−1 (b2x2 − x3)α2t−1 xα3t−1

3 ex3 dx3

,

where 0 ≤ y3 ≤ min (b1x1, b2x2), x1 > 0 and x2 > 0.

Step k of the EM algorithm consists of computing new parameter values

(α
(k+1)
1 , α

(k+1)
2 , α

(k+1)
3 ) given the current values (α

(k)
1 , α

(k)
2 , α

(k)
3 ) in two stages:

• stage 1: compute the conditional expectations in (6) using the current set

(α
(k)
1 , α

(k)
2 , α

(k)
3 ) of parameters, with:

f1

(
j, α

k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
b̄1x̄

(1)
j − Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

f2

(
j, α

k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
b̄2x̄

(2)
j − Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

f3

(
j, α

k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

h
(
α
k)
1 , α

(k)
2 , α

(k)
3

)
=

n∑
j=1

E
(
Ȳ

(3)
j |X̄

(1) = x̄
(1)
j , X̄(2) = x̄

(2)
j

)
.

• stage 2: take for (α
(k+1)
1 , α

(k+1)
2 , α

(k+1)
3 ) the values of (α1, α2, α3) that maximize (6),
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which here becomes:

g
(
α1, α2, α3, α

(k)
1 , α

(k)
2 , α

(k)
3

)
= n

(
ln
(
b̄1
)

+ ln
(
b̄2
))
− b̄1

n∑
j=1

x
(1)
j − b̄2

n∑
j=1

x
(2)
j

+

n∑
j=1

(
(α1tj − 1) f1

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

)
+ (α2tj − 1) f2

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

)
+ (α3tj − 1) f3

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

))
−

n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj)) + h
(
α

(k)
1 , α

(k)
2 , α

(k)
3

)
.

The maximization procedure in stage 2 is done by solving the following equation with

respect to αi:

∂g
(
α1, α2, α3, α

(k)
1 , α

(k)
2 , α

(k)
3

)
∂αi

=
n∑
j=1

tjfi

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

)
−

n∑
j=1

tjψ (αitj) = 0 (7)

for i = 1, 2, 3.

This EM algorithm provides estimates for α1, α2, α3 using the univariate ML estimates

(b̄1, b̄2) and consequently delivers estimates for a1, a2 and ρ.

In the same way, it is possible to estimate only α3 by an EM algorithm using the

univariate ML estimates (ā1, b̄1, ā2, b̄2). In that case, α
(k+1)
3 is the solution of the equation:

n∑
j=1

tj

(
f3

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

)
− f1

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

)
− f2

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3

))

−
n∑
j=1

tj (ψ (α3tj)− ψ ((ā1 − α3)tj)− ψ ((ā2 − α3)tj)) = 0.

3.3 Tests on simulated data

We now test the previous methods on simulated data. 500 time increments (tj)1≤j≤500 are

randomly chosen with similar magnitude as the data of track deterioration (the proposed

methods will be used on these data in Section 5). Then, 500 values of a bivariate Gamma

process with parameters a1 = 0.33, a2 = 0.035, b1 = 13.5, b2 = 20 and ρ = 0.5296

are simulated corresponding to these time increments. Here again the parameter values

have the same order of magnitude than those observed for track deterioration studied
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in Section 5. Three series of 500 data points are simulated independently. Results of

parameters estimation are given in Tables 1, 2 and 3, each corresponding to independent

series of data. In these tables, one can find: the true values in column 2, the empirical

estimators in column 3, the univariate maximum likelihood estimators of a1, b1, a2, b2

in column 4, the EM estimator of the three parameters a1, a2, ρ in column 5, using the

parameters b̄1, b̄2 previously estimated by the univariate maximum likelihood method

(from column 4), and the second EM estimator of the parameter ρ in column 6, using

the estimated parameters ā1, b̄1, ā2, b̄2 from column 4.

The initial values for the EM algorithm are different for the three tables. For Table

1, the EM algorithm has been initiated with α
(0)
1 = α

(0)
2 = 0.05 and α

(0)
3 = 0.15 (which

corresponds to a
(0)
1 = a

(0)
2 = 0.1 and ρ(0) = 0.75). For Tables 2 and 3, α

(0)
1 = α

(0)
2 =

α
(0)
3 = 0.01, and α

(0)
1 = 0.02, α

(0)
2 = 0.01, α

(0)
3 = 0.05 were taken respectively.

True Empirical Univariate EM algorithm

values estimators max likelihood EM1 EM2

a1 0.0330 0.0348 0.0342 0.0347 −

b1 13.5 14.38 14.14 − −

a2 0.0350 0.0362 0.0357 0.0354 −

b2 20 20.58 20.25 − −

ρ 0.5296 0.5637 − 0.5231 0.5214

Table 1 : Results for the first series of data.

True Empirical Univariate EM algorithm

values estimators max likelihood EM1 EM2

a1 0.0330 0.0315 0.0326 0.0328 −

b1 13.5 12.80 13.16 − −

a2 0.0350 0.0357 0.0361 0.0365 −

b2 20 20.25 20.54 − −

ρ 0.5296 0.5750 − 0.5272 0.5257

Table 2 : Results for the second series of data.
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True Empirical Univariate EM algorithm

values estimators max likelihood EM1 EM2

a1 0.0330 0.0297 0.0340 0.0343 −

b1 13.5 11.71 13.43 − −

a2 0.0350 0.0340 0.0385 0.0389 −

b2 20 18.79 21.28 − −

ρ 0.5296 0.5645 − 0.5060 0.5027

Table 3 : Results for the third series of data.

Figures 2(a), 2(b) and 2(c) show the evolution of a
(k)
i and ρ(k) along the different steps

of the EM algorithm (case EM1 in Table 2). We notice that the parameters a
(k)
i stabilize

more quickly than the parameter ρ(k). In other ways, the parameters α
(k)
i +α

(k)
3 for i = 1,

2 are quickly stable (about 5 iterations), but values of α
(k)
i are much longer to stabilize

(between 20 and 30 iterations).
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Figure 2. Evolution of the parameters during the execution of the EM algorithm.
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The conclusion of this section is that the estimation of the parameters (ai, bi) by

empirical and maximum likelihood methods both give satisfactory results, with a slight

preference to maximum likelihood estimation. Empirical estimators of ρ have a good

order of magnitude, but are sometimes not precise enough. Estimators of ρ obtained by

EM are always reasonable. The estimation of the three parameters (α1, α2, α3) (column

EM1) seems to give slightly better results than those obtained for α3 alone (column

EM2). The results obtained by the EM algorithm for parameters ai (column EM1) are

good, with a quality quite similar to those obtained by univariate maximum likelihood

estimation. Finally, the EM algorithm does not seem very sensitive to initial values, at

least if the initial value of α3 is not too small.

4. Intervention planning

A bivariate Gamma process Xt =
(
X

(1)
t , X

(2)
t

)
is now used to model the development

of two deterioration indicators of a system. We assume that there exist thresholds si

(i = 1, 2) for each indicator, above which the system is considered to be deteriorated.

The system is not continuously monitored but only inspected at time intervals, with a

perfect observation of the deterioration level. When one (or both) indicator(s) is (are)

observed to be beyond its threshold, an intervention is undertaken. When both indicators

are observed to be below their thresholds, no action is undertaken and a new inspection

is planned. The time to next inspection (τ) must ensure with a high probability that

neither X
(1)
t nor X

(2)
t go beyond their thresholds si before the next inspection.

Let (x1, x2) ∈ [0, s1[ × [0, s2[ be the observed deterioration level at some inspection

time, say at time t = 0 with no restriction. Also, let ε ∈]0, 1[ be some confidence level.

Using the bivariate Gamma process, the time to the next maintenance action τB is

chosen as the maximal value which ensures that the process stays below the thresholds

with a probability greater than 1− ε :

τB = max
(
τ ≥ 0 such that P(x1,x2)

(
X(1)
τ < s1, X

(2)
τ < s2

)
≥ 1− ε

)
.

where P(x1,x2) stands for the conditional probability given
(
X

(1)
0 , X

(2)
0

)
= (x1, x2).
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We have

P(x1,x2)

(
X

(1)
t < s1, X

(2)
t < s2

)
= P(0,0)

(
X

(1)
t < s1 − x1, X

(2)
t < s2 − x2

)
=

∫ s1−x1

0

∫ s2−x2

0
gt (y1, y2) dy1 dy2, (8)

where gt is the p.d.f. of Xt (see Eq. (2)). This quantity is continuous and strictly de-

creasing in t. If we set Eq. (8) equal to 1 − ε, the time τB may hence be numerically

computed as the unique solution to this equation in t.

Without a bivariate model, a natural time to next maintenance action for the system

is:

τU = max
(
τ ≥ 0 such that Px1

(
X(1)
τ < s1

)
≥ 1− ε and Px2

(
X(2)
τ < s2

)
≥ 1− ε

)
= min

(
τ (1), τ (2)

)
.

with

τ (i) = max
(
τ ≥ 0 such that Pxi

(
X(i)
τ < si

)
≥ 1− ε

)
,

where Pxi stands for the conditional probability given X
(i)
0 = xi.

Using

Pxi
(
X

(i)
t < si

)
= P0

(
X

(i)
t < si − xi

)
= Fait,bi (si − xi) ,

where Fait,bi (x) is the cumulative distribution function of the distribution Γ (ait, bi), the

time τ (i) is computed by solving the equation Faiτ (i),bi (si − xi) = 1− ε, for i = 1, 2, and

τU = min
(
τ (1), τ (2)

)
is derived.

Clearly we have :

1− ε = P(x1,x2)

(
X

(1)
τB < s1, X

(2)
τB < s2

)
≤ min

(
Px1

(
X

(1)
τB < s1

)
,Px2

(
X

(2)
τB < s2

))
,

which leads to τB ≤ min
(
τ (1), τ (2)

)
= τU .

The goal now is to study the difference between τU and τB, and more generally, to

understand the influence of the dependence between both components of Xt on τB. We

first provide numerical examples.
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Taking a1 = 0.03, b1 = 20, ε = 0.5 and s1 = s2 = 1, and different values for a2, b2,

x1 and x2, Table 4 gives the corresponding values for ρmax (as provided by (1)) and the

resulting τ (1), τ (2), τU and τB (ρmax).

a1 a2 b1 b2 x1 x2 ρmax τ (1) τ (2) τU

case 1 0.03 0.03 20 20 0.2 0.2 1 341.12 341.12 341.12

case 2 0.03 0.03 20 20 0.2 0.5 1 187.32 341.12 187.32

case 3 0.03 0.04 20 20 0.2 0.2 0.866 341.12 255.84 255.84

case 4 0.03 0.04 20 20 0.4 0.2 0.866 237.33 255.84 237.33

Table 4 : Four different combinations of values for a2, b2, x1 and x2,

and the resulting ρmax, τ (1), τ (2), τU and τB (ρmax).

The value of τB is plotted with respect to ρ in the Figures 3 for the different cases of

Table 4, and the corresponding value of τU is indicated.

In these figures, one can observe that both τB = τU and τB < τU are possible. One

can also observe some monotony property of τB with respect of the dependence between

X
(1)
t and X

(2)
t . More specifically, we have the following result:

Proposition 4.1: With all other parameters fixed, the bivariate preventive time τB is

an increasing function of the linear correlation coefficient ρ.

Proof : Let us consider two bivariate Gamma processes Xt and X̃t with the same mar-

ginal processes and linear correlation coefficients such that ρ ≤ ρ̃. Let us denote by U(x)

and Ũ(x) their respective tail integral functions provided by (3). We have U(x) ≤ Ũ(x).

It is proved in (Bäuerle et al. 2008) (theorem 4.8 and lemma 4.9) that if U(x) ≤ Ũ(x)

for all x in R2
+, then X ≤ X̃ with respect to the concordance order. This implies that

Px1,x2
(
X

(1)
t < s1, X

(2)
t < s2

)
≤ Px1,x2

(
X̃

(1)
t < s1, X̃

(2)
t < s2

)
for all t, x1 ≤ s1 and x2 ≤ s2. Then τB ≤ τ̃B. �

In conclusion to this section, one can see that using a bivariate model instead of two

separate univariate models generally shortens the time to the next maintenance action

(τB ≤ τU ). If both processes are correlated, the frequency of inspections must then be

increased in order to achieve the same safety level as in the uncorrelated case. So, if
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Figure 3. τB with respect to ρ and τU , for the four cases of Table 4

dependence is ignored, the policy is not as safe as it should be. Also, the optimal time

to the next preventive maintenance action is increasing with dependence (τB increases

with ρ), which implies that the error made when considering separate models (τU ) is

all the more important that the components are less dependent. This also implies that

the safest attitude, in case of an unknown correlation, is to consider both components as

independent and chose τ = τ⊥, where

τ⊥ = max
(
τ ≥ 0 such that Px1

(
X(1)
τ < s1

)
Px2

(
X(2)
τ < s2

)
≥ 1− ε

)
.

5. Application to track maintenance

A bivariate Gamma process is now used to model the development of the two track indi-

cators NL and NT (see the Introduction) and times to next intervention are computed,

as described in the previous section.

Using univariate maximum likelihood and EM methods on data corresponding to
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the Paris-Lyon high-speed line provides the estimations â1 = 0.0355, b̂1 = 19.19, â2 =

0.0387, b̂2 = 29.72, ρ̂ = 0.5262. Usual thresholds are s1 = 0.9 for NL and s2 = 0.75 for

NT. With these values, τ (1), τ (2) and τB are plotted in Figure 4 with respect of x2 when

x1 is fixed (x1 = 0.4). In that case τ (1) = 150.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100
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200

250

300
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400

x2

τ(2)

τB
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Figure 4. τ (1), τ (2) and τB with respect to x2 with x1 = 0.4

Figure 4 shows that taking into account the single information x1 = 0.4 as presently

done at the SNCF may lead to too late maintenance actions. As an example, if x2 = 0.4,

one has τB = 134.7 (and τ (2) = 152.9). The preventive maintenance action based only

on NL is consequently scheduled 15 days too late. If x2 = 0.5, one obtains τB = 95.9

(τ (2) = 97.5) and the maintenance action is undertaken 54 days too late. If x2 = 0.6, one

obtains τB = 47.1 (τ (2)= 47.2) and this is 103 days too late.

Concluding this section, one can finally observe that if x1 is not too close to x2, the

value τU = min
(
τ (1), τ (2)

)
seams reasonable for maintenance scheduling (see Figure 4),

contrary to the currently used τ (1), which may entail large delays in its planning (more

than 100 days in our example). If x1 is close to x2, the values of τU and τB have the

same order of magnitude, with τU > τB however, so that the preventive maintenance

action is again planned too lately (15 days in the example).
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6. Conclusion

A bivariate Gamma process has been used to model the development of two deterioration

indicators. Different estimation methods have been proposed for the parameters and

tested on simulated data. Based on these tests, the best estimators seem provided by

univariate likelihood maximization for the marginal parameters and by an EM algorithm

for the correlation coefficient.

Preventive maintenance scheduling has then been studied for a system that deteriorates

according to a bivariate Gamma process. In particular, it has been shown that, given an

observed bivariate deterioration level, the optimal time to maintenance is increasing with

dependence. It has been proven that the optimal time to maintenance is always shorter

when taking into account the dependence between the two deterioration indicators than

when considering them separately (or only considering one of them).

Finally, a bivariate Gamma process has been used to study a real track maintenance

problem. The application shows that when both observed deterioration indicators are

close to each other, the bivariate process gives safer results for maintenance scheduling

than both univariate processes considered separately or one single univariate process,

with the same order of magnitude in each case however. When the observed deterioration

indicators are clearly different, considering one single univariate process as it is done

in current track maintenance, may lead to clearly inadaquate results. The preventive

maintenance action is scheduled too late and the track passes to a deteriorated state

with a high probability. This application to real data of railway track deterioration hence

shows the interest of a bivariate model for a correct definition of a maintenance strategy.
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